Search results for "PHARMACOKINETIC MODEL"

showing 10 items of 16 documents

A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels After Drug Administration in Healthy Subjects and BRIC …

2019

Drug-induced liver injury (DILI) is a matter of concern in the course of drug development and patient safety, often leading to discontinuation of drug-development programs or early withdrawal of drugs from market. Hepatocellular toxicity or impairment of bile acid (BA) metabolism, known as cholestasis, are the two clinical forms of DILI. Whole-body physiology-based modelling allows a mechanistic investigation of the physiological processes leading to cholestasis in man. Objectives of the present study were: (1) the development of a physiology-based model of the human BA metabolism, (2) population-based model validation and characterisation, and (3) the prediction and quantification of alter…

0301 basic medicineEXPRESSIONPBPKLIVERmedicine.drug_classPhysiologyBenign Recurrent Intrahepatic CholestasisPopulationBIOMARKERScomputational modellingPhysiologyDIAGNOSISlcsh:Physiology03 medical and health scienceschemistry.chemical_compoundPHARMACOKINETIC MODEL0302 clinical medicineCholestasisPhysiology (medical)Glycochenodeoxycholic acidMedicineddc:610educationEnterohepatic circulationKINETICSOriginal ResearchLiver injuryINTRAHEPATIC CHOLESTASISbile acidseducation.field_of_studyBile acidlcsh:QP1-981business.industryBRIC type 2medicine.diseaseTRANSPORTERS3. Good health030104 developmental biologychemistryToxicitySIMULATION030211 gastroenterology & hepatologyENTEROHEPATIC CIRCULATIONDILIbusinesscholestasisFrontiers in Physiology
researchProduct

Quantitative analysis of the effect of controlled-release formulation on nonlinear gastrointestinal absorption of P-glycoprotein substrate talinolol …

2020

Abstract Oral absorption of talinolol, a substrate of P-glycoprotein (P-gp), from a sustained-release (SR) formulation was reportedly decreased compared to that from an immediate-release (IR) formulation. The aim of this study was to predict and understand the effect of controlled-release formulation on the oral absorption of P-gp substrates by developing a physiologically based pharmacokinetic (PBPK) absorption model incorporating multiple kinetic parameters obtained from in vitro studies, using talinolol as a model substrate. Simulation analysis using the developed PBPK absorption model indicated that the clinically observed marked decrease in the plasma concentration of talinolol adminis…

Absorption (pharmacology)Physiologically based pharmacokinetic modellingChromatographyPharmaceutical ScienceSubstrate (chemistry)02 engineering and technology021001 nanoscience & nanotechnology030226 pharmacology & pharmacyControlled releaseIntestinal absorption03 medical and health scienceschemistry.chemical_compound0302 clinical medicinechemistryPharmacokinetics0210 nano-technologyQuantitative analysis (chemistry)TalinololJournal of Drug Delivery Science and Technology
researchProduct

PET: Theoretical Background and Practical Aspects

2012

Positron emission tomography (PET) is a nuclear medicine imaging tool utilized for investigation of physiological processes in vivo. PET uses the decay characteristics of positron-emitting radionuclides which are produced in a cyclotron and then used to label compounds involved in physiological processes. Usually, the labeled compound—the tracer—is administered intravenously and distributed in the tissue. The radionuclide decays and the emitted photons are detected by the PET scanner. PET then offers the possibility to compute three-dimensional images of the biodistribution and kinetics of the regional radioactivity concentration. There are several options to analyze reconstructed PET image…

BiodistributionRadioactive tracermedicine.diagnostic_testComputer sciencePharmacokinetic modelingCerebral metabolic rateContext (language use)law.inventionlawPositron emission tomographyPet scannerNuclear medicine imagingmedicineBiomedical engineering
researchProduct

IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with…

2020

Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption i…

Data AnalysisPhysiologically based pharmacokinetic modellingDatabases FactualAdministration OralPharmaceutical Science02 engineering and technologyMachine learningcomputer.software_genreModels Biological030226 pharmacology & pharmacyBiopharmaceuticsPharmaceutical Sciences03 medical and health sciences0302 clinical medicineSoftwarePharmacokineticsHumansClinical Trials as Topicbusiness.industryCompound specificBiopharmaceuticsGeneral MedicineFarmaceutiska vetenskaper021001 nanoscience & nanotechnologyBioavailabilityIntestinal AbsorptionPharmaceutical PreparationsDrug developmentPerformance indicatorArtificial intelligence0210 nano-technologybusinesscomputerSoftwareForecastingBiotechnologyEuropean Journal of Pharmaceutics and Biopharmaceutics
researchProduct

A multilevel object-oriented modelling methodology for physiologically-based pharmacokinetics (PBPK): Evaluation with a semi-mechanistic pharmacokine…

2019

Abstract Background and objective The aims of this study are (i) to assess the predictive reliability of the physiologically based software PhysPK versus the well-known population approach software NONMEM for the cited semi-mechanistic PK model, (ii) to determine whether these modelling approaches are interchangeable and (iii) to compare acausal with causal modelling approaches in the framework of semi-mechanistic PK models. Methods A semi-mechanistic model was proposed, which assumed oral administration of a solid dosage form with a peripheral compartment and two active metabolites. The model incorporates intestinal transit, dissolution limited by solubility, variable efflux transporter ex…

DrugPhysiologically based pharmacokinetic modellingComputer sciencemedia_common.quotation_subjectPopulationCmaxHealth InformaticsModels BiologicalDosage form030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineSoftwarePharmacokineticsPharmacokineticseducationmedia_commonVariable (mathematics)education.field_of_studybusiness.industryReproducibility of ResultsExpression (computer science)Computer Science ApplicationsNONMEMSolubilityArea Under CurvebusinessBiological system030217 neurology & neurosurgerySoftwareComputer methods and programs in biomedicine
researchProduct

Magnetic resonance pharmacokinetic imaging clusterization of hepatocellular carcinomas as a means to grade tumor aggressiveness.

2012

Hepatocellular carcinoma (HCC) management takes into account clinical and radiological findings, such as tumor stage, hepatic functional status and clinical symptoms. It is necessary to evaluate the number, size and location of the lesions. However, lesion aggressiveness is not considered in this therapeutic workflow, although the biology and the growth rate of the lesions have an important impact on survival. The aim of this work was to establish if the quantitative pharmacokinetic assessment of dynamic contrast-enhanced magnetic resonance images of HCC can separate lesions with different microvascular properties and biological evolution. Forty five patients with HCC and dynamic contrast-e…

MalePathologymedicine.medical_specialtyCarcinoma HepatocellularPharmacokinetic modelingContrast MediaKaplan-Meier EstimateLesionCapillary PermeabilityPharmacokineticsTumor stagemedicineBiomarkers TumorCluster AnalysisHumansAgedHepatologymedicine.diagnostic_testbusiness.industryLiver NeoplasmsGastroenterologyMagnetic resonance imagingBiological evolutionMiddle Agedmedicine.diseaseImage EnhancementMagnetic Resonance ImagingHepatocellular carcinomaDisease ProgressionFunctional statusFemalemedicine.symptomNeoplasm GradingbusinessExpert review of gastroenterologyhepatology
researchProduct

Physiologically based metformin pharmacokinetics model of mice and scale-up to humans for the estimation of concentrations in various tissues

2020

Metformin is the primary drug for type 2 diabetes treatment and a promising candidate for other disease treatment. It has significant deviations between individuals in therapy efficiency and pharmacokinetics, leading to the administration of an unnecessary overdose or an insufficient dose. There is a lack of data regarding the concentration-time profiles in various human tissues that limits the understanding of pharmacokinetics and hinders the development of precision therapies for individual patients. The physiologically based pharmacokinetic (PBPK) model developed in this study is based on humans’ known physiological parameters (blood flow, tissue volume, and others). The missing tissue-s…

MalePhysiologyAdipose tissueType 2 diabetesPharmacology030226 pharmacology & pharmacyMice0302 clinical medicineAnimal CellsRed Blood CellsMedicine and Health SciencesTissue Distribution0303 health sciencesMultidisciplinarySimulation and ModelingQRMetforminBody Fluids3. Good healthMetforminBloodmedicine.anatomical_structureSmall IntestineMedicineAnatomyCellular TypesResearch Articlemedicine.drugPhysiologically based pharmacokinetic modellingScienceExcretionCmaxResearch and Analysis MethodsModels BiologicalBlood Plasma03 medical and health sciencesPharmacokineticsmedicineAnimalsHumansHypoglycemic AgentsComputer SimulationPharmacokinetics030304 developmental biologyPharmacologyBlood CellsDose-Response Relationship Drugbusiness.industryBiology and Life SciencesKidneysRenal SystemCell BiologyBlood flowmedicine.diseaseSmall intestineGastrointestinal TractDiabetes Mellitus Type 2Physiological ProcessesbusinessDigestive SystemPLOS ONE
researchProduct

Formulation predictive dissolution (fPD) testing to advance oral drug product development: an introduction to the US FDA funded ‘21st Century BA/BE’ …

2018

Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impac…

Physiologically based pharmacokinetic modellingBioavailabilityComputer scienceManometryDrug CompoundingAdministration OralPharmaceutical Science02 engineering and technologyBioequivalenceComputational fluid dynamics030226 pharmacology & pharmacyArticleDOSAGE FORMSINDUCED VARIABILITY03 medical and health sciences0302 clinical medicineBIOPHARMACEUTICS CLASSIFICATION-SYSTEMABSORPTIONHumansDissolution testingOral absorptionPharmacology & PharmacyDissolutionIN-VIVO DISSOLUTIONIn vivo dissolutionBioequivalenceScience & TechnologyWORKSHOP REPORTUnited States Food and Drug Administrationbusiness.industryGASTROINTESTINAL SIMULATOR GISVITRO DISSOLUTION021001 nanoscience & nanotechnologyBiopharmaceutics Classification SystemUnited StatesMODELDrug LiberationNew product developmentPredictive powerDIFFUSION-CONTROLLED DISSOLUTIONBiochemical engineering0210 nano-technologybusinessLife Sciences & BiomedicineOral retinoidMRI
researchProduct

In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for for…

2013

This review summarizes the current knowledge on anatomy and physiology of the human gastrointestinal tract in comparison with that of common laboratory animals (dog, pig, rat and mouse) with emphasis on in vivo methods for testing and prediction of oral dosage form performance. A wide range of factors and methods are considered in addition, such as imaging methods, perfusion models, models for predicting segmental/regional absorption, in vitro in vivo correlations as well as models to investigate the effects of excipients and the role of food on drug absorption. One goal of the authors was to clearly identify the gaps in today's knowledge in order to stimulate further work on refining the e…

Physiologically based pharmacokinetic modellingChemistry PharmaceuticalPharmaceutical ScienceExcipientAdministration OralComputational biologyPharmacologyPharmaceutical formulationModels BiologicalIntestinal absorptionDosage formBiopharmaceuticsExcipientsFood-Drug InteractionsIVIVCSpecies SpecificityIn vivomedicineAnimalsHumansPharmacokineticsPharmaceutical sciencesChemistryReproducibility of ResultsGastrointestinal TractIntestinal AbsorptionPharmaceutical PreparationsModels AnimalGastrointestinal Motilitymedicine.drugEuropean journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
researchProduct

IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 2: An introduction to the simulation exercise and ov…

2016

Orally administered drugs are subject to a number of barriers impacting bioavailability (Foral), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp®, and GastroPlus™) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters.Since the availability of input parameters was heterogeneous and highly variable, caution is required when interpreting the results of this exercise. Additionally, this prospective simulation exer…

Physiologically based pharmacokinetic modellingChemistryBiopharmaceuticsDrug Evaluation PreclinicalArea under the curveAdministration OralPharmaceutical ScienceModels Biological030226 pharmacology & pharmacyBiopharmaceuticsBioavailabilityClinical studyToxicology03 medical and health sciences0302 clinical medicineIntestinal AbsorptionPharmaceutical PreparationsPharmacokineticsCompounding030220 oncology & carcinogenesisStatisticsHumansComputer SimulationImmediate releaseForecastingEuropean Journal of Pharmaceutical Sciences
researchProduct